Smooth Imitation Learning

Hoang M. Le Yisong Yue
California Institute of Technology California Institute of Technology
hmle@caltech.edu yyuel@caltech.edu
Peter Carr

Disney Research
peter.carr@disneyresearch.com

Abstract

We study the problem of smooth imitation learning, where the goal is to train a
policy that can imitate human behavior in a dynamic and continuous environment.
Since such a policy will necessarily be imperfect, it should be able to smoothly
recover from its mistakes. Our motivating application is training a policy to imitate
an expert camera operator as she follows the action during a sport event; however
our approach can be applied more generally as well. We take a learning reduction
approach, where the problem of smooth imitation learning can be “reduced” to a
regression problem, and the performance guarantee of the learned policy depends
on the performance guarantee of the reduced regression problem (which is often
much easier to analyze). Building upon previous learning reduction results, we
can prove that our approach requires only a polynomial number of learning or
exploration rounds before converging to a good policy. Our empirical validation
confirms the efficacy and practical relevance of our approach.

1 Introduction

In many domains, one important machine learning task is to train an automated policy or controller
to mimic a human expert. For example, in automated broadcasting, we require an automated camera
controller that mimics the behavior of a professional camera operator in response to a dynamic
environment [[1]. One increasingly popular approach is to use imitation learning [3. 4], which aims to
learn a policy to predict human behavior given the current state of the environment, and is essentially
a “lifting” of conventional machine learning into dynamical environments.

We consider the agnostic learning setting, where any trained policy will be necessarily imperfect
due to limitations in the model class and feature representation of the environment. As such, when
taken to a dynamic environment, an imitation policy trained using conventional machine learning
methods must account for the sequentially cascading errors caused by a drift in distribution of states
at test time compared to what the model was trained on. In addition, many applications of imitation
learning naturally operate in environments with very large state space and action spaces. Both these
challenges can be posed as an exploration problem, i.e., how to (statistically) efficiently explore the
space of possible trajectories in order to reliably train a good policy.

In this paper, we consider the problem of smooth imitation learning, which extends conventional
imitation learning to the continuous regime. The goal is now to train a policy to smoothly mimic
human demonstrations in a continuous and dynamic environment. This problem arises naturally in
a diverse range of domains: in addition to our demonstrated application in automatic broadcasting
[1]], smooth imitation learning can be generally applied towards surgical robotics learning from
human demonstration, learning movement of bio-prosthetic limbs using neural signals feedback,
self-driving wheel-chairs, etc.

2 Problem Setup

Following the basic setup from [4], let IT denote a class of policies the learner is considering, and
let T" denote the time horizon of the imitation problem. Imitation learning is a sequential learning
problem. In each round n, the following happens:

e Given initial state so drawn from starting distribution of states, the learner executes a policy 7y,
resulting a sequence of states s7, ..., sp.

e For each s7, expert feedback ;" is provided indicating what the human expert would do given s7'.

e The learner integrates this knowledge and proceeds to the next round n «— n + 1.

For any policy 7 € II, let d] denote the distribution of states at time ¢ if the learner executed 7 for

the first £ — 1 time steps. Furthermore, let d, = % 23;1 df be the average distribution of states if
we follow 7 for all T" steps. The goal is to find a policy 7 € II which minimizes the imitation loss
under its own induced distribution of states:
7 =argminE, 4 _[l(s,7)], (1)
mell
where the (convex) loss function £(s,) captures how well 7 imitates expert human demonstrations
under those states. One common loss is squared loss between the policy’s decision and the expert
demonstration: £(s, 7) = || — m(s)||>. We assume the agnostic setting, where the minimizer of
does not necessarily achieve 0 loss (i.e., we cannot perfectly imitate the human expert).

For instance, in the basketball broadcasting setting, states s contain information regarding the loca-
tion of the players as well as the configuration of the camera, and the policy m must decide where
the point the camera next (i.e., 7(s)), with the quality of that decision characterized by the loss ¢
that compares with what the human expert would do given s.

Each 7, can be thought of as an exploration strategy that collects labels §7, ..., 7% for states
sT,...,sp. Because of the potential branching factor of decisions, one might naively think that
a very large (possibly infinite) number of learning rounds is required to fully explore the continuous
state space. Previous work showed that only a polynomial number of learning rounds is required for
convergence to the minimizer of (I [3] 4], but with a dependence on the length of each round 7T'.
In the following we present an approach that removes this dependence on 7' for smooth imitation
learning, and thus enjoys much faster convergence guarantees.

3 Our Contributions

We take a learning reduction approach, where feedback 7 is integrated via standard supervised learn-
ing and can be solved by existing machine learning algorithms. A big challenge with using learning
reduction is to control for the cascading errors caused by the changing dynamics of the system. As
the dynamics of the system change from one policy to the next, we no longer test on the same dis-
tribution of states as during training, which violates the assumptions of supervised learning. This
problem is additionally coupled with the need to explore efficiently to achieve optimal sample com-
plexity, as we are operating in an infinite / continuous state and action space. Our reduction approach
provides a solution to this coupled challenges. The key steps in the reduction are to show that:

e The empirical distribution of states that the supervised learning algorithm is trained on converges,
and thus the distribution of states dz induced by the resulting policy (approximately) matches the
distribution that 7 was trained on.

e The learning guarantees of the supervised learning problem “lifts” to the dynamical system, and thus
provides a bound on (T).

Our approach improves upon previous learning reduction approaches [3\ 4] in the following ways:

e The convergence rate does not depend on the length of each round 7" for smooth imitation learning,
and thus requires much less exploration than previous work. In addition, our approach has adaptive
learning rate, thus further improves the convergence rate compared to previous approaches.

e We propose an approach to simulate a substantial amount of “virtual” expert feedback, and thus
requires much fewer direct human expert demonstrations.

e Our approach is fully deterministic. Under the continuous setting, deterministic policies are strictly
better than stochastic policies as (i) smoothness is critical and (ii) policy sampling requires holding
more data during training, which may not be practical for infinite state and action space.

4 Approach

4.1 Learning Reduction Approach

Standard supervised regression methods assume i.i.d. training and test examples, which leads to an
unsatisfactory result directly applied to sequential learning problems (e.g. left panel of figure [2).
Thus, a principled reduction of smooth imitation learning to supervised regression should (approxi-
mately) preserve the i.i.d. relationship between training and test examples, and in particular the state
distribution d,. should smoothly converges to a stationary distribution. With such a stable learning
reduction, the performance of the regression subroutine can be used to quantify the performance of
the final policy 7y (see Theorem[.1)). The key design questions are: (i) what should be the explo-
ration policy for the next iteration? (ii) what should be the expert feedback? and (iii) how should we
design a good loss function to feed into the base regression routine?

Algorithm 1 Smooth Search-Based Imitation Learning

Require: Features X, human expert policy 7*, base routine Regress, regularizer fr
1: Initialize Yo = 7*(X), So = (X, Yo), fz = argmin;||Yo — f(Yo)ll

2: Initial policy mo = 7o = Regress(So, Yol fz)-

3:forn=1,...,Ndo

4: Rollout Y, = mp—1(Sn-1) = Set exploration trajectory
5: Set exploration states S, = ¢»(X,Y,) >e.g. Sy «— [Te—r,Yi 1.4, | Where yi' € Yy
6: Collect smooth expert feedback Y, = {91} Vst € S, = Gather 1-step look-ahead feedback
7: Update regularizer f > fz = arg minf||?n — f(?n)H
8: Learn model 7, = Regress(Sn, ?n|f;,)

9: New policy 7, = 875 + (1 — B)7n-1 = (3 adaptively set via loss of 7, vs. w1 relative to 7*
10: end for

11: return Last policy mn

Algorithm E]describes our approach. The raw data 7S = {X, 7*} consists of continuous streams
of input features X = {x1,..., 27} and a human expert demonstrator 7*. The state space S =
¢(X,Y) is defined based on both raw input X and an (imperfect) trajectory Y. For example,
st = [®t:t—r, Yt—1.t—r|. The exploration trajectory Y of a policy 7 can be rolled out by sequentially

applying 7 to S: y; = m(s¢). We denote by Y = {7:} the expert feedback actions indicating what
the human expert would do given exploration states S = {s;}.

The new exploration policy for the next round (Line[d) is set as the weighted average of the previous
learned regression model 7, and the previous exploration policy m,, (Line[9). This interpolation step
plays two key roles. First, it is a form of myopic or greedy exploration that incorporates the best
trained policy so far. Intuitively, rolling out 7,, leads to incidental exploration on the mistakes of 7,,
and so each round of exploration is focused on refining an improving policy.

Second, the interpolation in Line E] ensures a slow drift in the distribution of states from round
to round, which preserves an approximate i.i.d. property for the supervised regression subroutine
and guarantees convergence of the learning reduction approach. However this model interpolation
creates an inherent tension between maintaining approximate i.i.d. for valid supervised learning and
more aggressive exploration (and thus faster convergence). In fact, in previous work [3], theoretical
guarantees only apply for very small 3 (~ 1/T). We have developed an adaptive approach for
setting (3 that circumvents much of this tension (see Theorem [{.T), and thus guarantees a valid
learning reduction while substantially reducing the rounds of exploration and learning required.

Imitation learning relies on the expert providing feedback during each

roll-out of the exploration policy (Line [6)). Expert feedback §; reflects

what a human expert would have done given current (imperfect) state

s¢, and the most general way to acquire 7j; is to query the expert 7* ev-

ery time. However, in the smooth imitation regime, we can relax this

requirement by allowing for a substantial amount of virtual simulation 1 B c t
of expert feedback. The simulation can compute a smooth 1-step look-
ahead correction to current state s; based on actual, but limited human a smoother simulated feed-
demonstrator 7*’s response to a state. This approach can greatly re- .« of an imperfect trajec-
duce the need for constant human expert interactions to guide the train- 1oy compared to blue line

Figure 1: Red line represents

ing. FigureT|depicts an example where our policy has made a mistake at Location A, and where we
have a single demonstrated human trajectory from 7* (black line). Depending on the smoothness
requirements, we can simulate virtual expert feedback as via either the blue (less smooth) or red lin
(more smooth). In this work, we focus on smooth policies. See the appendix for more details.

The actual reduction is in Line [8] where a regression subroutine Regress returns a newly learned
policy based on current exploration states and expert feedback. In our smooth setting, the loss
function of Regress regularizes the smoothness of learning policy 7 in smooth policy class II via
an auto-regressor f,, the parameters of which are updated at each round based on collected expert
feedback. See appendix for more details.

4.2 Theoretical Guarantee

Algorithm([T]is an extension of the SEARN approach [3]], and can also be interpreted as performing
gradient desecnt in a smooth function space. The convergence rate of previous work [3] is tied to a
small and fixed learning rate 3(~ 1/7°). Our approach can remove this dependency on T for policy
class II with certain self-smooth property, thus allowing for much faster convergence guarantee. We
provide the following guarantee for our algorithm, the proof of which can be found in the appendix.

Theorem 4.1 (Policy Improvement). Assume the loss function € is convex and Lipschitz-continuous
with contant Ly, policy class 11 has the self-smooth property in which 7 € 11 is Lipschitz-continuous
with constant Ly < 1, and the quality of the base regression routine is controlled by constants 6 and
€ such that {(s,7(s)) < e and ||7(s) — w(s)|| < & for all state s. We can bound the overall policy
loss difference from the update rule e, = BT + (1 — B) in Algorithm[l] as:

L(mpew) — L(m) < Ble — L(mw) + (1 — B)LeLi (6 + LuC)] 2)

L(m)—e

LI rLnc)y Ve have L(Trpew) < L(m)

for C = max{0, 1_2211 y- In particular, if § > 1 —

5 Experimental Results

We applied our method to the setting of smooth spatiotemporal prediction for realtime camera plan-
ning [1]. The motivating application is determining where a camera should look when broadcasting
a sporting event. Given noisy tracking of players as raw input data, and associated camera angles
from professional human operator, the learning objective is to produce a policy smoothly and accu-
rate tracks the sporting event. Our algorithm produces policies that outperform the state-of-the-art
approaches [[1]]. In Figure[2] we present our result (right panel), in contrast to results from supervised
learning methods that ignore changing dynamics, i.e. trained with i.i.d assumption (left panel), and
methods that simply apply self-smooth regularizer (smooth filter) after supervised training (middle
panel). By adaptively selecting learning rate, our algorithm converges quickly to a good model after
only 10 rounds of exploration.

Model with Indepence Assumption Test Set Performance Test Set Performance

¥Values
|
TValues
!

500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000 0 50 1000 1500 2000 2500 3000 3500 4000
Frame Number Frame number Frame number

Medel with Indepence Assumption Test Set Performance Test Set Performance

TValues
!

1000 2000 3000 4000 5000 1000 2000 3000 2000 5000
Frame Number Frame number

Figure 2: Left panel: Performance of standard supervised learning using independence assumption. Middle
panel: Initial round, with smooth filter after learning. Right panel: Our algorithm after 10 round

References

[1] P. Carr and J. Chen. Mimicking human camera operators. In IEEE Winter Conference on
Applications of Computer Vision (WACV), 2015.

[2] A. Criminisi, J. Shotton, and E. Konukoglu. Decision forests: A unified framework for classi-
fication, regression, density estimation, manifold learning and semi-supervised learning. Foun-
dations and Trends in Computer Graphics and Vision, 7(2-3):81-227, 2012.

[3] H. Daumé I11, J. Langford, and D. Marcu. Search-based structured prediction. Machine Learn-
ing, 75(3):297-325, 2009.

[4] S. Ross, G. Gordon, and J. A. Bagnell. A reduction of imitation learning and structured pre-
diction to no-regret online learning. In Conference on Artificial Intelligence and Statistics (AILS-
TATS), 2011.

A Virtual Feedback, Loss Function and Smooth Decision Tree Regression

A.1 Virtual Simulation of Expert Feedback

In the absence of human expert during training, we can simulate the interactive expert feedback
based on existing (but limited) human demonstration trajectory Y* = 7*(X). During training,
we roll out an imperfect exploration policy 7 to obtain the exploration trajectory Y and associated
exploration states S = ¢(X,Y). Since policy is imperfect, exploration action y; is potentially
far off from real human action y;* given raw input x;. We can simulate an interactive feedback ¥;
that is a smooth recovery from current state s; such that 7; is a smooth transition from previous
time steps along exploration trajectory y;—1..—., while moving closer to the correct human actions
Yi,yf 1, ... There are multiple ways to computationally simulate the expert feedback to satisfy
this objective. In our implementation, we chose the expert correction to be
e =y +e My —vi)

where y;f is the human response to input x4, y; is the current exploration action, and the parameter
A > 0 dictates how aggressively the simulated expert is recovering the demonstrated human trajec-
tory. (i.e. larger A implies less smooth recovery). Intuitively, if at time ¢ we allow the simulated
expert takes over the exploration trajectory, this formulation will let the simulated expert to converge
to real human trajectory exponentially fast, albeit at different degrees of smoothness depending on
parameter A. Note that various other computational regimes will work to simulate the expert. The
only strict requirement is that the simulated feedback ¢; should inch closer to ground truth y;* com-
pared to imperfect exploration action y;. However, smooth correction of expert is important for the
stability and smoothness of the new learning model.

A.2 Loss Function Design

For an exploration policy 7 with corresponding rolled-out trajectory Y = {y;}_;, we form explo-
ration states S = ¢(X,Y) and collect expert feedback Y. A base regression routine is then called
to learn a new model (line 8] of algorithm [I)). The loss function used for this regression should sat-
isfy the dual goal of smoothness and accuracy. We approximate the smoothness of the curve by a
smooth auto-regressor f that satisfies y; ~ fr (y¢—1..—-)- In the loss function f, acts as a smooth
regularizer, the parameters of which can be updated at each around based on expert feedback Y
(line [7| of algorithm |1 according to f7 = argmin f(||§' —f (?) Il). The regression routine should
optimize the trade-off between y; ~ ¥ (expert label) versus smoothness as dictated by regularizer
fr. With regularization parameters defined for f, the base regression routine will train a new policy
7 using the joint loss function £L(7) = Lp(7) + wLg(m) = ||'Y — Y|? + w||Y — f+(Y)||. Here
w is a hyper-parameter that controls how much we care about smoothness versus absolute accuracy
relative to expert trajectory Y.

The nature of f, varies depending on application domains. In our broadcasting example, our
smoothness regularizer f, is a linear auto-regressor based on previous 7 frames, where 7 is the
number of time steps with which an imperfect trajectory can be smoothly recovered by an expert’s
correction. In this setting, f, is parameterized by a set of smoothness coefficient ¢, = [c1, ..., ¢/]
such that given a trajectory Y, ¢, is the minimizer of smoothness loss Lg(Y) = Zil(yt —
i1 (ciyi—i))? (via least squares fit), and fr = fr (Yi—1:4—r|cr) = Di_; Ci¥t—i. With the smooth
coefficients ¢, determined, the base regression routine will train a new policy 7 using the joint loss
function £(r) = Lp(m)+wLs(m) = S, (g —e)>+w Sty (y: = S7_, ciye—1)?, where § is the
expert feedback at time ¢, y; is the trajectory the regression routine needs to learn, and w is a pre-set
parameter that trade-off smoothness versus absolute accuracy. In the next section, we develop an
extension of traditional decision tree-based ensembles to accommodate this joint loss function.

A.3 Smooth Regression Tree

Empirically, decision tree-based ensembles are among the best performing supervised machine
learning method [2]]. Due to the piece-wise constant nature of decision tree-based prediction, the
results are inevitably non-smooth. We provide an extension to classical decision tree-based regres-
sion, where prediction at leaf node is not necessarily a constant, but is a function of both static leaf

node prediction and input features. Let the generic input and output space be Z and O respectively.
We denote and decouple the input features to the predictor by ¢ = {u,v) € Z where u and v are both
(multi-dimensional) vectors, but v is the vector of dependent input features that influences the pre-
diction. Let the generic output value be 3. For the ease of presentation, we view y € R'. However,
the framework can easily be generalized into multi-dimensional output space. We have a training

data set TS = {({ug, ve), yt)ivz 1}. In the traditional decision tree setting, the algorithm learns a

function 7' : Z — O such that at test time, given a new input to the predictor ¢sest = (Utest, Vtest s

T would take (usest, Usest y to navigate to a terminal leaf node that contains a subset of training data

P < TS and outputs a constant (average) prediction Ypredict = ﬁ > ys. We extend this
(pt,yt)€P

framework such that the prediction made at terminal leaf node is a function of both the static predic-

tion and dependent input features v,¢,,. This framework is appealing as the base regression routine
in our algorithms should handle a loss function that depends on both output values and certain input
features.

Recall that in traditional regression tree, the training goal is to predict g; = argmin,, L7s(y) from

input ¢; such that to minimize the global loss L7s(y) = D.(y — v:)®> = Y. D(y,y:) where D
t t
is the usual squares distance loss. In our new setting, we want to additionally approximate §; ~

f(vy) on top of the usual objective §; ~ y;. We modify the loss function to incorporate both
objectives and seek to minimize instead L7s(y) = >, D(y, y:) + S(y:, 2¢) where we have f(v;) =
i

argmin S(y,v;). A natural choice is to simply set D and S to be the squared loss function to
y
yield closed-form solutions. In our broadcasting application, we choose D(y,y:) = (y — y;)? and

smoothness loss S(y;, 2:) = w(y: — f(2¢))?, yielding L7s(y) = D(y — v:)? + w(y: — f(20))?,

t
where w is a hyper-parameter that controls how much we care about the loss given by S relative to
D.

Setting terminal node value. Given a terminal leaf node with training data P < TS, we want to
set a node value ¥,,,4e such that

Unode = argmin Lp(y) = arg min Z D(y,yt) + S(yz, vt)

v Y (pt,y:)EP

Ye
. (p1,ye)eP
—argmin 33 (y—)” + wly — () = S

Y (pt,y)EP

which is the simple average of output values within subset P. Note that this is not necessarily the
same as terminal node values in traditional decision trees due to the presence of S(y, v¢) during
splitting.

3)

Making Prediction. Let input to the predictor at test time be ¢iesr = {Utest, Viesty- We use input
features uies+ and vie4¢ to navigate to a terminal node, representing by subset P of the training data.
The prediction ¥;,,¢qic: 1S made such that

Ypredict = ArgMin D(Y, Unode) + S(Y, Viest) = arg min(y — Jnode)” + w(y — f(viest))”
Yy Yy
_ gnode + wf(vtest)
1+w
where ¥p,04c i8 set according to equation (3)).

Training and Node Splitting Mechanism: For a node representing a subset P of the training data,
the node impurity is defined as:

Inoge = Ep(gnode) = Z D(gnodea yt) + S(yta Ut) = Z [(gnode - yt)2 + w(yt - f(vt))Q]
(b1,y1)EP (61,y1)eP

where Jnode 1S set according to equation (3) over (¢, y:)’s in P. At each possible splitting point
where P is partitioned into Pj.r; and Prigp¢, the impurity of the left and right child of the node
is defined similarly. As with normal decision tree, the best splitting point is chosen as one that

.. . . . P Prs
maximizes the impurity reduction: I,,,qc — l Il;"“ d Tiept — %I’right

B Theoretical Analysis

In this section, we provide the proof to theorem .1} Let T" be the trajectory horizon. For a policy
7 in the deterministic policy class II, given a starting state sq, we roll out the full trajectory so —
51 = ... = sp. Let £(s,a) be the loss of taking action a at state s, we can define the trajectory
loss of policy 7 from starting state sg as

T
L(n|sg) = 2 S¢, T

For a starting state distribution D, we define policy loss of 7w as L(m) = Es,~p[L(7|s9)]. To
simplify notations, we define s; = [z, m(s;—1)] where z; encodes the featurized input at current
time step, and 7(s;—1) encodes the dependency on previous predictions. Our results easily extend
to the case where s; depends on previous 7 predictions. We skip the subscript to consider general
policy update rule within each iteration

7' = Tpew = 7+ (1 — B)m 4)
where 7 is the current policy (combined up until the previous iteration), 7 is the learned model

from calling the base regression routine Regress(S, ?\ f#). Interpolation parameter 3 is adaptively
chosen in each iteration. We are interested in quantifying the policy improvement when updating 7
to 7. Specifically, we want to bound

A = L(7') — L(x)

Note that Searn [3]] and Dagger [4] provide bounds for A that are generally positive, meaning the
policy does not degrade too much after each update. In our analysis, we point out choices of 3 where
learning policies can strictly improve.

Based on update rule (@), consider rolling out 7’ and 7 from the same starting state s, to obtain two
separate trajectories 7’ — [sg — §} ... — s and T — [sg — S1... — s7]. We will bound
the loss difference of old and new policies starting from same state s

1 r / / /
-7 ;E(st,w (5¢)) — €(s¢,7(st))

Assume convexity of £ (e.g. sum of square losses):
U(sy, 7' (s1)) = £(sy, BR(sy) + (1 = B)m(sy))
< BU(s;, 7(sh)) + (1 = B)e(s;, m(s}))
Thus we can begin to bound individual components of A(sg) as
U(sy,m (s5)) = Lse, (1)) < Be(st, R(st)) + (1= B)E(st, m(st)) — L(se, m(s))

Let the upperbound on loss of learned model 7 be € such that V¢: £(s}, 7(s})) < €, we then have:

T
A(sg) < e — BL(m|s0) + (1 — 5)% Z [[(s;,w(s;)) - E(Stﬂr(st))] ®)
< Be— BL(rw|s0) + (1 — ZLeII7T (s1) — m(se) (6)

for L,-Lipschitz loss function .

Recall that s} = [z, 7(s},_;)] and s; = [z, m(s;—1)], assume the self-smooth Lipschitz property
of policy class II with Lipschitz constant Ly < 1, we have:

I (s5) — w(se)l| = llr([2e, 7' (si_1)]) — 7 ([ze, m(se-1)]l]
< Ly’ (s31) — m(se-1)|
Combine this with inequality (), we have a bound for A at s as:
T—1

A(sg) < e — BL(7|so) + (1 — 6)L5LH— Z |17 (s%) — 7 (se)| (7

For any state s, let the upperbound on the quality of the regression routine Regress controlled by 4,
ie. Vs, ||7(s) — w(s)|| < 4. Using triangle inequality, we obtain:

17" (s7) = w(se)ll < [|7"(s7) = w(sp)ll + Iw(sh) — 7(s)] ®)
= Bl7(s) = w (sl + llm(si) — w(se) ©)
< 36 + Lyl|s, — s¢| (10)

Given a policy class IT with Ly < 1, the following claim can be proved by induction:
Claim: For C' = max{0, %}, we have ||s} — s¢|| < 8C

Proof. Induction on ¢ O

Combine the above claim with inequalities (T0) and (7)), we have
I (%) = w(se)ll < 86 + LnC and (1)
A(so) < Be — BL(7|so) + (1 — B)Le L (86 + L BC) (12)

Integrating (T2) over starting state sy and rearrange, we arrive at the following policy improvement
bound:

L(mpew) — L(m) = L(7") — L(w) < B[6 — L(7) + (1 — B)LeLni(e + LO)] (13)

This means in the worst case, as we choose 8 — 0, we have L(n') — L(7) — 0, meaning the new
policy does not degrade much, and if we choose 8 > 1 — %,

policy as L(7') < L(mw).

we obtain a strictly better

	Introduction
	Problem Setup
	Our Contributions
	Approach
	Learning Reduction Approach
	Theoretical Guarantee

	Experimental Results
	Virtual Feedback, Loss Function and Smooth Decision Tree Regression
	Virtual Simulation of Expert Feedback
	Loss Function Design
	Smooth Regression Tree

	Theoretical Analysis

