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ABSTRACT 
 
We present a new discrete transform, the Gould transform (DGT). The transform has many interesting mathematical 
properties. For example, the forward and inverse transform matrices are both lower triangular, with constant diagonals 
and sub-diagonals and both can be factored into the product of binary matrices. The forward transform can be used to 
detect edges in digital images. If G is the forward transform matrix and y is the image, then the two dimensional DGT, 
GyGT can be used directly to detect edges.  Ways to improve the edge detection technique is to use the “combination of 
forward and backward difference”, GT(Gy) to better identify the edges. For images that tend to have vertical and 
horizontal edges, we can further improve the technique by shifting rows (or columns), and then use the technique to 
detect edges, essentially applying the transform in the diagonal directions.  
 

1.  INTRODUCTION TO SOME COMBINATORIAL NOTATIONS 
 
We present a new transform for signal and image processing applications. The discrete Gould transform is based on 
combinatorial notation described in Riordan [1, p 49]. Therefore, before presenting the transform, we will  introduce the 
mathematical convention to facilitate the presentation of the transform. 
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2.  GOULD’S CLASS OF INVERSE RELATIONS 

 
A class of inverse relation was given by Gould  (1961)[ 1] , in the form 
 

∑

∑

=

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−+
−+
−+−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

n

k

k

n

k

k

kF
kn

kbna

kbna

kbka
nf

n

bna

kf
n

bka

k

n
nF

0

0

)()1()(

),()1()(

 

Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning
edited by E.R. Dougherty, J.T. Astola, K.O. Egiazarian, N.M. Nasrabadi, S.A. Rizvi

Proc. of SPIE-IS&T Electronic Imaging, SPIE Vol. 6064, 60640I, © 2006 SPIE-IS&T · 0277-786X/06/$15

SPIE-IS&T/ Vol. 6064  60640I-1

Downloaded from SPIE Digital Library on 08 Mar 2012 to 67.243.141.3. Terms of Use:  http://spiedl.org/terms



By replacing a  with p , b  with q , )(nF with na , )(nf
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Now if we replace kb  by k
n b)1(− , we have our version of the discrete Gould transform 
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We note that p can be any positive integer. 
 

3.  THE DISCRETE GOULD TRANSFORM  
 
3.1  Transform matrix  
 

Based on the inverse relations in (1), the NN ×  transform matrix G is defined as ⎟⎟
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 the transform matrix is lower triangular matrix. 

 
G is defined by two parameters, the number of rows and columns N, and the parameter p  that can be selected for a 

specific application. 
 
For example, the case 4,2 == Np  yields: 
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3.2  One-dimensional Gould transform 
 
Given a set of data [ ]ny  with 1,...1,0 −= Nn , and a positive integer p, the discrete transform is given by  
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where ),( pNGG = is the NN ×  transform matrix, and y is the 1×N  vector whose elements are [ ].ny  Table 1 shows 

the Gould transform of various signals. 
 
 
3.3  The inverse Gould transform 
 
Based on the inverse relations in (1), we can see that the NN ×  inverse transform matrix 1−G  is defined as 
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So if we have an 1×N  vector whose elements are [ ]nY , then the inverse Gould transform can be represented as: 
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Some characteristics of the transform matrix and the inverse transform matrix are worth mentioning. For example, they 
are both lower triangular matrices. Both matrices are completely determined by the first column. Specifically, one 
column can be obtained from the preceding one by shifting all the entries down one row. Furthermore, both matrices 
have constant diagonals. This suggests that both forward and inverse transforms can be computed very fast in parallel.  
 
3.4  Mathematical properties of the transform matrices 
 
3.4.1 Determinants 
 

For any n and p, det 1),( =pnG  and det 1),(1 =− pnG . Since both  G and G-1 are  triangular,  then their determinants are 

equal to 1. 
 
3.4.2 Eigenvalues 
 
The eigenvalues of G(n,p) are all 1 for any n and p. 
 
Proof 
 
The eigenvalues λ satisfy 0),( =− IpnG λ . The values from the first row of ),( pnG consist of the value 1 at location 

(1,1) and 0 elsewhere. Notice that if we remove the first row and first column of the matrix ),( pnG , the remaining 

matrix is ).,1( pnG −  Thus 
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From here we can see that all n  roots of the polynomial )),(det( IpnG λ− are 1. 
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3.4.3 Factoring the transform matrix 
 
The forward transform matrix can be factored based on the transform matrix for .1=p  

For any n and any p, we have the  relationship: 

                                                    pnGpnG )1,(),( =   
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, ),( pnG then can be factored into the matrices consisting of only 1 and -1. 

 
As a consequence of the above relationship, for any n and any p, we also have 
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, this also provides a way to factor the inverse transform matrix into binary 

matrices. 
 
This property can be proved by mathematical induction.  
 
Proof 
 
For ,1=p  the statement becomes obvious. 

Suppose that we have ,)1,()1,( 1−=− knGknG for some positive integer 2>=k . 

We will show that knGknG )1,(),( = . 

By definition, matrix ),( knGG = is defined by 
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Therefore, kk nGnGnGknGnGknG )1,()1,()1,()1,()1,(),( 1 =×=−×= −  

 
By the principle of mathematical induction, the relationship is proved. 
 
3.4.4  Basis functions 

Our Gould transform matrix has a set of basis vectors =kG  ⎟⎟
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x is the variable. Notice that x belongs to the set of integers. This set of basis vectors satisfies .
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yields different basis functions for the different transform matrices ).,( pnG  Here ),,( pkxGGk = with x varying from 0 

to n-1 forms the thk column of our transform matrix.  
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Notice that each basis vector from the transform matrix is the shifted version of the preceding basis vector. 
 

For example, in the transform matrix G(8,3), the thk column can be obtained by shifting the thk )1( − column. 

 
      1     0     0     0     0     0     0     0 
    -3     1     0     0     0     0     0     0 
     3    -3     1     0     0     0     0     0 
    -1     3    -3     1     0     0     0     0 
     0    -1     3    -3     1     0     0     0 
     0     0    -1     3    -3     1     0     0 
     0     0     0    -1     3    -3     1     0 
     0     0     0     0    -1     3    -3     1 
 
This shifting operation is equivalent to applying the right shift matrix to one of the basis vector. 
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Some properties of basics vectors are as follows: 
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3.4.4 Relations to other discrete transforms 
 
The basis function of our transform matrix can be related to some discrete polynomials, such as the binomial and 
Hermite polynomials. 
 
The binomial polynomials can be expressed as: 
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We can rewrite the binomial polynomials as: 
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The discrete Hermite polynomials differ from the discrete binomial polynomials only by the normalization factor ⎟⎟
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Thus we can derive a similar relationship between the Hermite polynomials and our basis functions. 
 
3.4.5  Data storage 
 
The data size (word length) needed to store the transformed image or data can be easily estimated.  For example, if we 
know that an NxN block of input data has maximum and minimum values that differ my   m ( largest value of a forward 
difference) , then we  provide a bound for the transformed data. Specifically, if we apply the transform matrix G(N, 1) to 
this NxN block, then we can assure that the output data will not exceed m regardless of the values of  the input data. If 
we apply the transform matrix G(N, 2) to this block, we can assure that the output data will not exceed 2m.  
 
We compared the mean and standard deviation of the transform coefficients of  discrete cosine transform (DCT) and the 
DGT using random image data ranging from 0to 255.  The DGT coefficients   have a mean of about 1/3 of the mean of 
the DCT coefficients and a standard deviation of about 1/6  of the standard deviation of  the DCT coefficients.  
 

4.  APPLICATIONS IN EDGE DETECTION 
 
4.1  Using the two-dimensional Gould transform 

 
The original idea was to apply the 2-D Gould transform for p =1 to an image to detect the edges. This is equivalent to 

TGyG , in which G is the transform matrix, and y is the image. We will demonstrate the technique using the case 

.3=N  
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If we apply the 2-D transform to the image,  intermediate result Gy  is 
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The essence of the 2-D Gould transform is that we perform the 1-D transform for every column, and then applying the  
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1-D transform for every row of the resulting matrix. This technique can certainly be used for edge detection. It can detect 
the sharp changes in the input data. In the above demonstration, if e is large relative to b and d , then the transition from 
b  to e  in the vertical direction and the transition from d  to e  in the horizontal direction are the sharp changes in the 
image. This change will be detected as )()( adbe −−− will have a large value, at the same time ab −  and ad −  have 

small values. Figure 1 shows example of an image and its DGT transform. 

  
 
 
In this case, typically four pixels will be involved in deciding whether a particular pixel is part of an edge. And this could 
be its weak spot. For example, consider the case where k and h are approximately equal, and both values are much 
greater than e  and f . In the vertical direction, k should belong to an edge because there is a sharp difference between 

f  and k . However, the value )()()()( efhkehfk −−−=−−−  will approximately be 0.  

 
One way to avoid this is to perform the 2-D Gould transform on the image y as describe above to get Y1, and then 
perform another transform on the transpose of image y to get Y2, and then add Y1 and Y2 to get image Y as shown in 
Figure 2. 

 
Figure 2.  Enhanced edge detection method 

 
4.2  Using the combination of forward and backward difference 
 
Another technique results in much better edge detection than the 2-D transform technique. Using the notation from 
section 4.1, we know that performing the forward transform Gy  is the same as applying the 1-D transform for every 

column. Now, instead of applying the 1-D transform for every row of the resulting matrix, we apply another column 
transform to it, but the transform matrix will be the transposed version of the original one.  Then, 

)(GyGY T= . 

 

 

Figure 1(a).  Cameraman         Figure 1(b).  Edge Detection 
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This technique will detect the changes in the vertical direction . Let us take an example with  N=3 to illustrate this idea. 

Again, suppose that the image
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We note that this forward operation (Gy) in the horizontal direction can be an edge detector all by itself. The edges are 
show in Figure 3(a). However, it can be improved. Now we apply the transform  
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We can see that if d  is much greater than a  and g then dgda −− ,2  will be discarded, gad −−2 will be large and 

this technique can detect the edges in the horizontal directions easily. The result of applying this combination of forward 
and backward transform in the horizontal direction is shown in Figure 3(b).  Notice that this result is much better than  
performing only the forward transform Gy. 
 

 
  
 
 
In addition, we can detect the edges in the vertical directions by repeating the same operations for the transpose of image 
y as shown in Figure 4(a). The addition of the two images 3(b) and 4(a) will give the edges of y in both directions. The 
result of this technique is shown in Figure 4(b) 

 Figure 3(a). Edge detection using                                                        Figure 3(b). Edge detection using horizontal 
     the forward difference only                                                               forward-backward difference combination  
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4.3  The improved forward-backward operation edge detection method 
 
Earlier we described a method to detect edges using the combination of the forward and backward operations.  We used 
the forward and backward operation to detect the vertical edges, and then used the same technique to detect the 
horizontal edges.  However, it is important to note that many images are “upright” in nature, which means the images 
contain objects that have horizontal and vertical edges only. This could be a problem for our edge detector, because the 
above column edge detector will tend to cancel out the vertical edges (although the row edge detector will make up for 
it), and the row edge detector tends to cancel out the horizontal edges. Although the column edge detector and the row 
edge detector will complement each other, a diagonal edge detector method might be a better choice for “upright” 
images. 
 
In this technique, we also detect the edges in two directions, which are the main diagonal and the subdiagonal direction.  
We demonstrate this technique for the case N = 3. Let the image be 
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⎡
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y . To perform the transform in the subdiagonal direction, we move the thi  row to the right thi )1( − step. 

The first number of the thi row will align with the thi  number of the first row. 

After this step, we have the image

⎥
⎥
⎥

⎦
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⎢
⎢
⎢

⎣

⎡
=

khg

fed

cba

y . To obtain an )12()12( −×− nn image, we pad our image with 

the same numbers as the top and the bottom number in each column. Doing this step to y yields: 
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y . Now, applying the column detection technique for this image, using the Gould matrix for 

1,12 =−= pnN , and then extract the NN × matrix from the result, we will have the subdiagonal edge image.  This is 

the subdiagonal result for the camera man image as shown in Figure 5 (a). 
 

  

Figure 4(a). Edge detection using vertical                                                       Figure 4(b). Edge detection using the combination 
Forward-backward difference combination            of forward and backward differences in both directions 
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To perform the transform in the diagonal direction, we also move the rows, but to the left. Re-align the rows so that the 
thi number of the thi row aligns with the first number of the first row. The image y will have the form 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

khg

fed

cba

y . Now if we pad this image and apply the transform for the )12()12( −×− nn image, we will have 

an edge image in the diagonal direction.  This diagonal result for the camera man image as shown in Figure 5(b). 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5(c). Result of improved method 
 
When we add the two images (subdiagonal and diagonal technique), we obtain the  result (better than the forward-
backward for rows and columns technique) as shown in Figure 5 (c). 

 
4.4  Thresholding the image 
 
We can see that although the above method can detect the edges, it also includes noise in the resulting image. In fact, the 
noise  is not “real noise”, because it  comes from actual edges (though tiny) of the original image. We are interested in a 
way to exclude the noise out of the transformed  image. To do this, we need to find a threshold T so that every pixel that 
has the value greater than T belongs to an edge, and any other pixel that is less than T will be ignored, or considered to 
be the background. 
 
This in essence will give a binary image. The value of T will be image dependent. The goal of this section is to find ways 
to estimate the reasonable values for T. We used the basic global thresholding  method presented in [2, pg. 599]. 
 

 Figure 5(a). Subdiagonal edge detection   Figure 5(b). Main diagonal edge detection 
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The initial value for T is the average gray level of the original image. For the cameraman image, Figure 6 shows the 
edges using this algorithm after performing the combined forward-backward difference operations.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As we can see, the presence of white dots in the lower half of the picture suggests that the noise-like edges are stronger 
than the building’s edges in the original picture.  
 

5.  SUMMARY 
 
 
The discrete Gould transform has applications in digital image processing such as edge detection since it allows a very 
quick way to detect edges in an image. The coefficients of the transform matrix perform a derivative operation of order p 
and so the inverse transform is “repeated integration” of order p.      For example, p = 1 yields the coefficients 1 and -1 in 
the transform matrix, which can be used to approximate the first derivative of the input data. Case p = 3 yields the 
coefficients 1, -3, 3, -1, which can be used to approximate the third derivative. These derivative patterns suggest that the 
discrete Gould transform will detect the sharp changes in the input data, and will transform uniform input data to 0.  
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Figure 6: Edge detection using the transform and global thresholding method 
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Table 1:   Gould  transforms 
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